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Abstract— This paper explores a coordinate transformation
defined by the composition of diffeomorphic maps as an
equivalence criteria between two vector fields (i. e. ODEs)
induced by different oscillatory chemical reaction networks
(CRNs): (1) The Brusselator, a theoretical minimal Mass
Action System (MAK) with limit cycle, and (2) the Oregonator,
a minimal CRN designed to model the oscillations in the
Belousov-Zhabotinsky (BZ) reaction. The diffeomorphic maps
are constructed by means of Lie derivatives which creates
a tangent space to the vector fields. These maps, through
their inverses, makes possible to express the concentrations
of chemical species of both CRNs as a function of the other,
point by point in time.

Keywords: Brusselator, Oregonator, Chemical Reaction
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I. INTRODUCTION

Although chemical oscillations has been reported since
1828 (Epstein and Pojman, 1998), the theoretical frame-
work which satisfactory explain them was developed until
1955, when Prigogine and coworkers pointed out that self-
organization and chemical oscillations were well explained
by their ideas of far-from equilibrium thermodynamics
(Epstein and Pojman, 1998, and references there in). As an
example of their theory, they designed a chemical oscillator
of 4 reactions, later dubbed as the Brusselator (Prigogine
and Lefever, 1968). Moreover, the Brusselator was also ca-
pable to display pattern formation (stripes and spirals) when
diffusive terms were coupled to the Mass Action Kinetics
(MAK) ODEs. This striking behavior was essentially the
same observed by Belusouv, when investigated a solution of
bromate, citric acid, and ceric ions (Ce+4) in an unstirred
cylinder, the solution exhibited traveling waves of yellow
due the conversion from Ce+4 to Ce+3. On the other
hand, if the reaction takes place in a well stirred media,
the solution oscillates from yellow to colorless.

In 1968, Zhabotinsky presented a better formulation than
the Belusouv’s by replacing citric acid with malonic acid.
In this way, the Belusouv-Zhabotinsky (BZ) reaction caught
the attention of several chemists. Among them, a group
from the University of Oregon were the first to elucidate a

mechanism of 10 reactions showing qualitative agreement
with the BZ reaction (Noyes et al., 1972). Two years later,
the same group reported a reduced version of 5 reactions,
the so-called Oregonator (Field and Noyes, 1974). This
minimal version was indeed able to account for the variety
of oscillatory phenomena observed experimentally for the
BZ reaction (Field and Noyes, 1974). It is noteworthy to
mention that one of the most detailed mechanism reported
for the BZ reaction has more than 40 reactions (Hegedus et
al., 2001).

The fact that two or more mechanisms might generate
the same dynamics is known as the fundamental dogma
of chemical kinetics. Thus, given the dynamics of chem-
ical species concentrations (the experimentally “integrat-
ed” version of the set of MAK-ODEs), for some candidate
mechanisms will be impossible to discriminate among them.
Whether or not chemical mechanisms are indistinguishable
can be thought as an equivalent problem. At this respect,
recent results in (Craciun and Pantea, 2008), explores nec-
essary and sufficient conditions for two or more mechanism
to induce the same MAK-ODEs for some choice of kinetic
constants, which are:

1. their source complexes, i. e the linear combination of
chemical species at the left of the chemical arrow,
must be the same, and

2. the intersection of the open convex cones generated
by the set of reactions for each source complex, is
not empty.

Mechanisms fulfilling these conditions are considered as dy-
namically equivalent (Craciun and Pantea, 2008). Moreover,
under some conditions is possible to determine dynamical
properties of some mechanism by analyzing other (possibly
smaller and/or unrelated) mechanisms (Craciun and Pan-
tea, 2008). In particular, for the Brusselator and Oregonator,
the condition 1 is not fulfilled (see section II). Nevertheless,
both mechanisms have common dynamical features.

In this paper, we propose the composition of diffeomor-
phic maps such that chemical species concentrations for
both, Brusselator and Oregonator, can be expressed as a
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function of the other (equivalence). The equivalence it is
also dynamic, because these maps are defined point by point
in time for some accessible region in the space generated
via Lie derivatives of the vectors fields.

This paper is organized as follows: section II is devoted
to define concepts from the chemical engineering literature.
In section III, we set the theoretical background necessary
for construction of diffeomorphic maps via Lie derivatives
of vector fields. Some numerical results are presented and
discussed in section IV. Conclusions are drawn in section
V.

II. CHEMICAL REACTION NETWORKS AND
MASS–ACTION KINETICS

Let us consider a chemical reaction system of r reactions
and m reacting chemical species represented by:

α1jS1+· · ·+αmjSm
kj→ α′

1jS1+· · ·+α′
mjSm, j = 1, . . . , r.

where αij ∈ R, and chemical species are represented
by Si, i = 1, . . . , s. The variable denoting chemical
concentration for a chemical specie is xi ∈ R̄+ where
R̄+ , {x ∈ R | xi ≥ 0, l = 1, . . . , n} and R+ , R̄+\{0}.
The rate constant, kj ∈ R+, j = 1, . . . , r, encode external
factors influencing the velocity of j − th reaction and the
concentrations of chemical species which are considered
as constants throughout the reaction. The stoichiometric
coefficient, nij = α′

ij − αij , is the net amount of i − th
chemical specie which is consumed (or produced) in the
j − th reaction. Stoichiometric coefficients are arranged in
the stoichiometric matrix N ∈ Rs×r. The monomials of
the reaction rates, υj(kj , x) = kj

∏m
i=1 x

κij are formed
according to MAK law, where the kinetic exponents κij

encode the molecularity of the i − th specie in the j − th
reaction. These kinetic exponents are arranged in the kinetic
matrix, κ ∈ R̄s×r

+ . The MAK-ODEs induced by a chemical
mechanism are defined as

ẋ = N · υ(k, x), x(0) ≥ 0 (1)

In general, N does not have maximal row rank. For d =
rank(N), there exist s− d conservation relations

WT ·x = c (2)

with WT ·N = 0 for a W ∈ Rs×(s−d), where c ∈ R+.
A reaction mechanism is “a detailed description of

the pathway leading from the reactants to the products,
including as complete a characterization as possible of
the composition, structure and other properties of reaction
intermediates and transition states (Temkin et al., 1996)”.
Because some chemical species are present in excess, do
not vary on time for practical purposes. These are named
external species (Eiswirth et al., 1991); those who do vary
on time are called internal species. A chemical reaction
network (CRN) is constructed using pseudoreactions, i.e.
those remaining in the reaction mechanism by setting a ∅ for
every external specie, leaving the internal ones intact. The

linear combination of internal species before and after the
chemical arrow in a CRN are named complexes (Feinberg,
1987). Of particular interest is the set of complexes that
appears only at the left of the chemical arrow, the so-called
source complexes. Monomials of MAK are derived from
them, thus providing the velocity terms of the MAK-ODEs.

Brusselator Oregonator

2X + Y
k1→ 3X Z̃

k′
5→ Ỹ

k′
1→ X̃

k′
3→ 2X̃ + Z̃

∅
k4

GGGGGGBFGGGGGG

k3
X

k2→ Y X̃ + Ỹ
k′
2→ ∅ k′

4← 2X̃

The associated CRNs for the Brusselator and Oregonator
are depicted above, where the internal species for the former
are denoted by X and Y , meanwhile for the latter are X̃ =
[HBrO2], Ỹ = [Br−] and Z̃ = [Ce+4]. Source complexes
for both CRNs are: C0,BR = {2X+Y, X, ∅} and C0,OR =
{Z̃, Ỹ , X̃, X̃ + Ỹ , 2X̃}, thus, condition 1 from section
I does not hold, and Theorem 4.4 in (Craciun and Pantea,
2008) cannot be applied.

The stoichiometric matrices corresponding to the above
CRNs are:

N =

[
1 −1 −1 1

−1 1 0 0

]

Ñ =




1 −1 1 −2 0
−1 −1 0 0 1
0 0 1 0 −1




Note that neither of them has row rank deficiency, thus
no conservation relations exists. The monomial vectors of
reaction rates are

υ(k,x) =




k1x
2
1x2

k2x1

k3x1

k4


 , υ̃(k′, x̃) =




k′1 x̃2

k′2 x̃1x̃2

k′3 x̃1

k′4 x̃2
1

k′5 x̃3




Finally, the set of MAK-ODEs induced by the Brussela-
tor are

ẋ1 = k1x
2
1x2 − k2x1 − k3x1 + k4

ẋ2 = −k1x
2
1x2 + k2x1 (3)

and for the Oregonator we have

˙̃x1 = k′1x̃2 − k′2x̃1x̃2 + k′3x̃1 − 2k′4x̃
2
1

˙̃x2 = −k′1x̃2 − k′2x̃1x̃2 + k′5x̃3 (4)
˙̃x3 = k′3x̃1 − k′5x̃3

The above sets of MAK-ODEs, beyond linear terms, are
quite different, differing in one reaction. Even if we know
in advance the set of parameters for the MAK-ODEs, it is
difficult to elucidate a region in concentration space where
both can be considered equivalent. In this sense, we seek for
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conditions where chemical concentrations for both systems
be equivalent. If such conditions exist and are fulfilled for
any two CRNs, then, in some space, they are equivalent via
a suitable mapping.

III. COORDINATE TRANSFORMATION VIA LIE
DERIVATIVES

In this section we construct diffeormorphic maps (i.
e. differentiable bijective maps) via Lie derivatives of an
observable function along the vector fields induced by
the CRNs. These maps are a coordinate transformation
from local coordinates to a local linear tangent space. By
definition, the existence of a continuous inverse map is
assured. These mathematical properties provide a suitable
frame, via composition of functions, to write states from one
system as a function of other states. In particular, because
the ODEs (3-4) evolves in different dimensions (R2 and R3,
respectively), we can expect lost of some information after
composition of functions. In other words, one system will
be the projection of the other after composition.

We can write the set of MAK-ODEs as ẋ = f(x),
where f(x) is the vector field that maps points from some
open set D ⊂ Rn to a tangent space, TM . Consider the
existence of a smooth output function y = h(x), where
h : Rn → R. In particular, for chemical reactions, any
measurable chemical specie concentration will be valid as
an output function. If the system ẋ = f(x), y = h(x)
satisfies the observability rank condition about x0, then,
a coordinate transformation (diffeomorphism) z = Φ(x)
around x0 can be constructed via Lie derivatives as follows
(Neijmeijer and van der Schaft, 1995)

Φ(x) = (h(x), Lfh(x), . . . , Ln−1
f h(x)) (5)

with the Lie derivative of the output along the vector field
defined as

Lfh(x) =
n∑

k=1

fk(x)
∂h(x)

∂xk
(6)

Using an output function y = h(x) = x1 for the Brusse-
lator, the coordinate transformation is given by Φ(xBR) =
(h(x), Lfh(x))

T zBR = Φ(xBR), thus

zBR = Φ(xBR)

Φ(xBR) = (x1, k1x
2
1x2 − k2x1 − k3x1 + k4)

T (7)

which satisfies the (local) observability rank condition for
the set UBR := {(x1, x2) ∈ R2| x1 > 0, x2 ≥ 0}, thus
ΦBR : UBR → R+ × R. The inverse of Φ(xBR) in terms
of z′s is given by

Φ−1(zBR) = (z1,
z2 + (k2 + k3)z1 − k4

k1z21
)T (8)

for z1 6= 0. Applying the same procedure for the Oregonator
with ỹ = h(x̃) = x̃3 as an output function we have

z̃OR = Φ̃(x̃OR) = (h(x̃), Lfh(x̃), L2
fh(x̃))

T

where

h(x̃) = x̃3

Lfh(x̃) = k′3x̃1 − k′5x̃3 (9)
L2
fh(x̃) = k′3((k

′
1 − k′2x̃1)x̃2 + (k′3 − 2k′4x̃1)x̃1))

− k′5(k
′
3x̃1 − k′5x̃3)

which is locally observable for the set UOR :=

{(x̃1, x̃2, x̃3) ∈ R3| x̃1 6= k′
1

k′
2
, (x̃2, x̃3) ≥ 0}, thus

Φ̃OR : UOR → R̄+ × R × R. The associate inverse map
Φ̃−1(z̃OR) = (φ̃−1

1 , φ̃−1
2 , φ̃−1

3 )T reads as follows

φ̃−1
1 =

z̃2 + k′5z̃1
k′3

(10)

φ̃−1
2 =

z̃3 − k′3(k
′
3 − 2k′4µ)µ+ k′5(k

′
3µ− k′5z̃1)

k′3(k
′
1 − k′2µ)

(11)

φ̃−1
3 = z̃1 (12)

where µ(z̃) =
k′
5z̃1+z̃2
k′
3

, such that z̃2 + k′5z̃1 6= k′
1k

′
3

k′
2

, to
avoid singularity for φ̃−1

2 . In order to get the chemical
species concentrations of the Brusselator as function of
the Oregonator’s concentrations, we define the following
composition x∗

BR = Φ−1
BR(Φ̃OR(x̃OR))

x∗
BR =

(
x̃3

k′
3x̃1+(k2+k3−k′

5)x̃3

k1x̃2
3

)
(13)

where * stands for the composed states. The Oregonator’s
concentrations as function of Brusselator’s are defined ac-
cording to x̃∗

OR = Φ̃−1
OR(ΦBR(xBR))

x̃∗
OR =




k1x
2
1x2+(k′

5−k2−k3)x1

k′
3

z̃3−k′
3(k

′
3−2k4ω)ω+k′

5(k
′
3x1−k′

5ω)
k′
3(k

′
1−k′

2x1)

x1


 (14)

where ω(xBR) =
k1x

2
1x2+(k′

5−k2−k3)x1

k′
3

. Note that x̃∗
2,OR

depends also on z̃3, which can be considered as zero
because the Brusselator is a 2 dimensional system.

IV. RESULTS AND DISCUSSION

An equivalence criterion for smooth vector fields is the
concept of dynamically (topologically) equivalent. That is,
two vector fields defined on the same state space are called
dynamically equivalent if there is a homeomorphism (a
bijection with a continuous inverse) of the state space that
maps all orbits of the first vector field onto orbits of the
second vector field, and preserves the direction of time
along all the orbits (the time parameterization of the orbits
is ignored). Of course, if two vector fields are topologically
equivalent, then their phase portraits are qualitatively the
same. In particular, via Lie derivatives, we compute diffeo-
morphic maps (a differentiable homeomorphism) for two
systems defined in 2 and 3 dimensions, i. e we cannot map
all the trajectories of one systems to the other. In this sense,
one system will be a projection of the other for some region
of interest. However, this do not exclude the fact that a
qualitative behavior of trajectories cannot be preserved.
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Of particular interest are the compositions defined in
equations (13-14). Through these compositions it is possible
to map trajectories from the Brusselator’s concentration
space to Oregonator’s concentration space, and vice versa.
That is, Φ−1

BR ◦ Φ̃OR : UOR → UBR and Φ̃−1
OR ◦ ΦBR :

UBR → UOR. Looking at the equations (13-14), we have
that x∗

1,BR = x̃3 and x̃∗
3,OR = x1,BR. Although the

remainder chemical concentrations are mapped by rational
expressions to other scales of magnitudes, x1,BR, x̃3,OR

are mapped by the identity map (free of parameters),
thus we can state that Brusselator and Oregonator are
partially dynamical equivalent under this particular choice
of (h(x), h(x̃).

The regions of phenomenological interest for chem-
ical species concentrations to be mapped are UBR ⊂
R2

+, UOR ⊂ R3
+. To assure that trajectories from either

subsets do not cross to the negative orthant, is not trivial
because the composition maps depend on kinetic constants
from both, Brusselator and Oregonator CRNs. Neverthe-
less, despite its apparent complexity, for the composition
map Φ̃−1

OR ◦ ΦBR, a set of kinetic constants and initial
conditions, are readily find it as follows. From equation
(14) we have x̃∗

1,OR =
k1x

2
1x2+(k′

5−k2−k3)x1

k′
3

, and we want
that x̃∗

1,OR > 0, thus

k1x
2
1x2 + (k′5 − k2 − k3)x1 > 0

(k1x1x2 + k′5 − k2 − k3)x1 > 0

k1x1x2 + (k′5 − k2 − k3) > 0

and we arrive at the condition

x1,BR > (
k3 + k2 − k′5

k1
)(

1

x2,BR
) (15)

Again, from equation (14), x̃∗
2,OR > 0 is equivalent (after

ω factorization) to 2k′3k4ω
2 − (k′23 + k′25 )ω + k′3k

′
5x1 > 0.

Doing the proper algebraic manipulations to solve for x1,
we arrive to the following inequality

x1,BR > (
ω

k′5
)(k′3 +

k′25
k′3

− 2k4ω) (16)

which implies that

ω < (
1

2k4
)(k′3 +

k′25
k′3

) (17)

Notice that ω = x̃∗
1,OR > 0, if equation (15) holds.

The Brusselator undergoes a Hopf bifurcation for kinetics
constants k1 = k3 = k4 = 1 and k2 = 2 (Nicolis
and Prigogine, 1977). From (Field and Noyes, 1974), we
set k′3 = 8 × 103, k′5 = 1. Then, equations (15-17)
holds for initial conditions xBR(0, 0) = (1, 3). This
particular sets of parameters and initial conditions lead to
ω < 4000. Condition x̃∗

3,OR > 0 is trivially satisfied. Fig.
1 shows that Φ̃−1

OR ◦ΦBR preserves the qualitative behavior
of Brusselator’s states in the Oregonator’s state space.

On the other hand, conditions the map Φ−1
BR ◦ Φ̃OR must

satisfies in order to stay in the positive orthant can be
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X
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R

Fig. 1. Trajectories from Brusselator (blue) space mapped by (14) to R3
+

(red).

derived from equation (16); x∗
1,BR > 0 is trivially satisfied.

The condition x∗
2BR > 0 is equivalent to k′3x̃1+(k2+k3−

k′5)x̃3 − k4 > 0, which can be written as

x̃1,OR + (
k2 + k3 − k′5

k′3
)x̃3,OR >

k4
k′3

(18)

From this inequality is possible to proof the existence of
kinetic constants such that (18) holds, if k2 + k3 > k′5.
Furthermore, upper and lower limits for x̃1,OR, x̃3,OR can
be derived from

x̃1,OR >
k4
k′3

− (
k2 + k3 − k′5

k′3
)x̃3,OR (19)

which implies that x̃3,OR < k4

k2+k3−k′
5

. On the other hand,
assuming x̃3,OR = 0, implies x̃1,OR > k4

k′
3

. Using the above
numerical values for kinetics constants, we have x̃1,OR >
2.5× 10−3 and x̃3,OR < 0.5. The problem is that, for this
set of parameters, x̃1,OR → 1× 10−11 as t → ∞, which is
quite below condition x̃1,OR > 2.5× 10−3. In this sense, it
is required to explore the parameters space in order to fulfill
the above conditions. It might be possible that, for those
parameters, the Oregonator’s MAK-ODEs do not display
oscillations or any nonlinear phenomena at all.

V. CONCLUSIONS

The chemical species concentrations of two different
oscillatory CRNs, not necessarily of the same dimension,
can be expressed as function of the other, and vice versa,
through composition of diffeomorphic maps. These maps
were constructed via Lie derivatives of a suitable observable
(a measure chemical specie) along the vector fields induced
by the set of MAK-ODEs. For a set of kinetic constants and
a suitable initial condition states, was possible to map tra-
jectories from Brusselator’s space onto Oregonator’s space,
preserving the qualitative dynamical nature displayed by the
Brusselator. The opposite case, i. e mapping Oregonator’s
trajectories onto Brusselator’s was partially achieved for
x∗
1,BR, thus both chemical oscillators can be regarded as
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partially dynamic equivalent for these chemical species.
Conditions in parameters space that guarantee x∗

2,BR > 0
cannot be fulfilled for typical values of both, Brusselator
and Oregonator CRNs. In this sense, a broad parametric
search need to be performed.
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